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Although weather-related accidents accounted for only 3.6 % of all general aviation acci-
dents in 2002, over 70% were fatal. Faulty decision making due to inaccurate or incomplete
awareness of the weather situation accounts for approximately 14 % of all fatal general avia-
tion accidents. We describe a context-aware, domain and task knowledgeable, personalized
and adaptive assistant designed to decrease the workload required to maintain situational
awareness. The assistant automatically monitors weather reports for the pilot’s route of flight
and warns of detected anomalies. When and how warnings are issued is determined by phase
of flight, the pilot’s definition of acceptable weather conditions, and the pilot’s preferences for
automatic notification. In addition to automatic warnings, the pilot is able to verbally query
for weather and airport information. By noting what requests are made during the approach
phase of flight, our system learns to provide the information without explicit requests on
subsequent flights with similar conditions. We show that our weather assistant decreases the
time required to answer relevant pre-flight questions by more than 2.5 times over answering
the same questions using a conventional pre-flight weather briefing, and decreases the time
required to maintain in-flight weather situational awareness by more than 5.5 times when
compared to the conventional method of in-flight weather briefings. In both situations, our
system enables the pilot to allocate more time to other tasks such as scanning for anomalies.

I. Introduction

NLY 4% of non-military aircraft are classified as commercial air carriers. The other 96% are considered general

aviation (GA). The target of our research is the 75% of civil aircraft that are characterized as small aircraft with
2to 6 seats and 1 or 2 piston engines. Within this group, loss of weather awareness historically has the highest fatality
rate (71% fatality rate in 2002).! Two reasons have typically been cited as a cause or contributing factor: pre-flight
weather briefings are in a format that is difficult to interpret and in-flight weather briefings are difficult to obtain
and interpret. Much previous research has focused on the pre-flight briefing issue’= and has resulted in graphical
representations that are easier to interpret. Our current research focuses on the in-flight briefing issues.

The conventional method for in-flight briefings is for the pilot to obtain via aircraft radio a verbal update of
conditions from a ground-based weather specialist. This process has a number of disadvantages. First, it is difficult to
create a big picture of conditions from a verbal description. Next, a single specialist is responsible for communicating
with a potentially large number of pilots. The number of pilots seeking information increases further when the weather
is worst and updates are most needed. This can lead to long waits for access and to shortened interactions that allow
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the pilot to receive only very specific information. Last, and perhaps the biggest disadvantage, the pilot must initiate
the request for weather updates. Unless the weather in the local area is deteriorating, pilots often rely on the accuracy
of the pre-flight briefing. This approach can result in a decrease of diversion options if they encounter unexpected
conditions later in the flight.

We began by consulting with domain experts to develop the requirements for a weather briefing system to address
the deficiencies of the conventional method. Our goal for such a system was to improve the pilot’s weather awareness
without increasing workload. Because the in-flight environment is very vision intensive, a subgoal was to minimize
required visual attention. Our system, Aviation Weather Environment (AWE)), fulfills this requirement in four ways.
First, it automatically checks for weather updates, freeing the pilot to manage essential flying tasks without distraction.
Second, it provides three different graphical representations of important weather elements overlayed on top of a
navigation map. The representations depict current and forecast conditions in an easy to interpret manner and are
geographically positioned next to each applicable airport to enable the pilot to picture conditions along the route of
flight. Third, it implements a speech-based user interface to enable the pilot to extract weather information verbally.
Last, it implements an interface agent. The agent automatically checks for weather updates and warns the pilot of
any conditions that do not meet preset limits. It is context-aware, deducing the current phase of flight from the GPS
location and the pilot-entered route of flight. It uses this context information to further filter the warnings that it
issues. In addition, it tracks the pilot’s verbal requests for information and learns habits for the type of information
of interest at particular times during a flight.

The first two elements of AWE, automatic checking for weather updates and graphical representations of important
weather elements, are described in Ref. 6. In summary, AWE parses textual documents downloaded from the DUATS
(Direct User Access Terminal System) system. DUATS is a Federal Aviation Administration (FAA) approved weather
briefing and flight planning service available to all United States pilots with at least a student pilot certificate. It
provides a pre-structured, textual briefing of weather conditions along a pilot-specified route or area of flight. AWE
extracts three elements from the briefing (METARSs (meteorological conditions), TAFs (terminal area forecasts),
and winds aloft) and presents this information visually. Evaluation of this weather visualization aspect of AWE is
described later in the first part of Section 5.

The third element of AWE, the speech based user interface, is described in Ref. 7. AWE uses a command and
control speech interface in which the pilot issues terse directives modeled after standard pilot-controller phraseology.
IBM’s ViaVoice speech recognition system is used with a flexible grammar to support different phraseology yet
constrained enough to help the pilot to remember what to say and to optimize recognition accuracy. Succinct answers
to pilot queries are provided using the speech synthesis engine of IBM ViaVoice.

In this paper, we focus on the fourth element of AWE and describe the weather agent in Section 3 and the pilot
preferences learning algorithm in Section 4. The weather agent incorporates domain, task, and pilot knowledge
to provide weather situation awareness to the pilot. Furthermore, the agent learns and adapts according to the pilot’s
preferences to provide weather information at a relevant time with or without an explicit pilot request. In Section 5,
we present the results of a preliminary evaluation of whether AWE decreases a pilot’s workload in major tasks such
as detecting anomalies in traffic conditions, and in instrument and engine readings, and whether the pilots find the
system usable. We conclude with possibilities for future enhancements in Section 6.

II. Related Work

One of the more recent innovations in general aviation is the capability to receive up-to-date digital weather data
while in flight.8~'! Two main approaches have emerged for this so-called data link capability.'?>"'> One utilizes ground
station networks and continuously broadcasts weather products; the other relies on low-Earth-orbit communication
satellites to respond to explicit pilot requests for individual weather reports. The method of pilot interaction with
each system differs due to the approach of transmission.'® In the broadcast approach, the pilot is provided with
all weather reports for a large geographic area. Most products are broadcast once every five minutes. In contrast,
the request-and-reply approach requires that the pilot request an individual report (e.g., current conditions at SFO
airport). After a delay (which can vary from one to twenty minutes), the report is transmitted to the pilot.

In both cases, the pilot has access to NEXRAD radar reports, current weather reports, and forecast weather reports.
NEXRAD radar reports are shown graphically, forecast conditions are shown textually, and current conditions can
be shown either textually or graphically. The graphical depiction of current conditions shows a very small portion
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of the available data; to get the full report, the pilot must read the textual report. In any case, the weather reports are
provided to the pilot to filter for appropriateness to route-of-flight and to interpret without any automated assistance.

In contrast to the above methods, research is underway on automated assistance to improve pilots’ situational
awareness.>>!"2% One such decision support system, AWARE, aims to help pilots interpret weather reports and
its functionality is similar to ours in some respects.® In-flight, AWARE monitors the proximity of hazards such as
thunderstorms and informs the pilot visually by color-coding the corresponding button on a graphical user interface.
The pilot can then drill-down to textual information or examine NEXRAD radar data to fully understand the situation.
Our system differs in the weather elements we consider, the additional flexibility and support we offer the pilot to
filter the available data, and the multimodal approach we use for notification of relevant anomalies.

Our system also attempts to leverage some of the concepts developed by researchers of user-adaptive interfaces.
As we describe in Section III, our system is adaptive in that the system modifies its own behavior as a result of
inferences made from information about the user. In addition, we also incorporate the facility where the user is able
to modify aspects of an interface to suit individual preferences.

Although designing an adaptive interface is not one of our major goals in this work, we include a high-level
overview of this important topic. Adaptive interfaces are becoming important in a variety of settings. For example,
Microsoft’s Office Assistant attempts to provide the user context-aware help, and car brake lights adapt by enlarging
the brake light area when a driver forcefully applies the brakes (e.g., BMW 7 Series). The advantages of adaptive
interfaces include the ability to tailor information to a user leading to greater comprehensibility, relevance, and
enjoyment for the user;?"">? and the ability to save the user time and effort searching by implementing social recom-
mendation techniques,? by learning behavioral regularities of the user,>*? or by offering context-relevant help.?%?’
They accomplish this by modeling the user’s personal characteristics, general interests, proficiencies, current goals,
behavioral regularities and psychological states, and then use these models to make inferences about the user. Unfor-
tunately, inferences about properties like preferences and knowledge on the basis of indirect evidence are difficult and
often unreliable, the inference methods may require a large amount of behavioral data to generalize sufficiently, and
even if the system can infer the user’s psychological state (e.g., happy, frustrated, or distracted), it may not be obvious
how to adapt its own behavior accordingly. Even if these technical concerns are resolved, a greater disadvantage may
be that adaptation can reduce the controllability and predictability of a system for its users.?® Skilled users often rely
on automatic processing with little attention or conscious control. If a interface adapts to the user, even if the user
notices the adaptation, the automatic processing may need to be replaced by conscious, controlled processing, which
may lead to errors. Users that do not notice the adaptation and have certain expectations about where things can be
found and what effects of actions should be may have more difficulty interpreting an adaptive interface’s behavior
and may require more time and more trial and error to operate the system effectively.

III. Weather Agent

AWE’s weather agent is a context-aware, task-knowledgeable, personalized, and adaptive assistant. The task of
the weather agent is to provide relevant in-flight weather data to the pilot at a relevant time with or without an explicit
pilot request. The weather agent has built-in knowledge of the domain, the task, and the pilot. Domain knowledge is
used to determine if a parameter or a trend is cause for concern. Task knowledge is used to determine if that data is
relevant in a particular phase of flight. And pilot knowledge is used to determine when and how to provide relevant
data to the pilot without being obtrusive and bothersome.

Type of tasks, activities, and weather updates that a pilot needs depends on different phases of flight. We take this
into account in limiting the scope of the agent’s capabilities to the cruise and approach phases. During the departure
and climb phases, the pilot’s pre-flight briefing is likely still applicable and his focus is on flying the airplane.
Similarly, during the landing phase, he is in relatively close proximity to the destination airport and has access to
other forms of weather update (e.g., ATIS, AWOS, or visual confirmation via the windsock) and is again focused on
configuring and landing the aircraft. In contrast, during cruise and approach, the pilot’s workload is typically lower
and the possibility for changing weather since the pre-flight or last weather update is greater. Therefore, all of AWE’s
capabilities are available via the graphical user interface during all phases of flight, but unsolicited suggestions are
offered only during cruise and approach.
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A. Domain Knowledge

Wind, visibility, cloud height, temperature, turbulence, and icing can each adversely affect a flight. Wind, visibility,
and cloud height are most often considered a cause or factor in general aviation aircraft accidents.?® Airport-specific
current condition reports, airport-specific forecasts, and winds aloft reports are most frequently consulted by pilots>’
to obtain data about winds aloft, surface winds, cloud height, visibility, temperature, and dew point. AWE collects
these three reports about all route airports, from departure through destination. It then filters the data using built-in
knowledge of which elements affect pilots’ decisions. All other data can safely be ignored, though it is available for
the pilot to read if desired. In addition to weather data, AWE uses data about the airport layout (e.g., orientation of
runways and the traffic pattern) to further assist with decisions regarding landing.

B. Task Knowledge

Although domain-based filtering decreases the amount of data significantly, not all of the remaining data is relevant
to the task. AWE uses task knowledge coded in a rule-base to further reduce unnecessary data.

During cruise, the pilot may be interested in:>° the local altimeter setting; changes in winds aloft if the destination
is no longer within fuel range constraints; significant discrepancies between the current conditions and the conditions
forecast for the time period; current conditions at the destination and en-route airports that do not meet the pilot’s
constraints; and revised forecasts that do not meet the pilot’s constraints. Each constraint can be specified by the
pilot, as described below. Some constraints, such as visibility, can be checked against incoming data directly. Other
constraints require multiple sources of data. For example, checking crosswind constraints requires incoming data
and knowledge of the airport layout. Similarly, correlation between actual and forecast conditions requires inspecting
multiple incoming data elements. Checking these compound constraints requires the most pilot cognitive effort. AWE
uses rules and heuristics to assist the pilot by automating the checks.

During the approach phase, determined from GPS location and the flight plan, the pilot may be interested in
destination area conditions, including visibility, ceiling, surface wind, and density altitude; the airport layout including
runway orientation, field elevation, pattern altitude, location of the pattern (i.e., left or right traffic pattern), and runway
length; and altimeter setting for the destination area. If conditions are deteriorating, it may be important to know
the nearest airport with acceptable conditions. Even when conditions at the destination airport are acceptable, the
proximity of adverse conditions may also influence the pilot’s expectations for landing there. As described below,
AWE aims to assist the pilot by tracking the above information and by informing only when appropriate as determined
by encoded pilot preferences and relevance to the current phase of flight.

C. Pilot Knowledge

Each pilot’s go/no-go decision is influenced by the individual’s own characterization of the weather conditions.
For example, one pilot’s comfort level is exceeded with a 15 knot surface wind; another pilot is not concerned until
the wind exceeds 30 knots. Additionally, each pilot’s desire for automated alerts differs. Whereas one pilot may want
automatic alerts if the visibility at the destination decreases below 10 miles, another may prefer to query manually
until it decreases below 4 miles, and yet another may be annoyed by interruptions and would rather always query
manually. The desired form of alerts also varies. Some pilots dislike verbal messages—they are content to fly along
listening to air traffic controllers (ATC), other pilots, or their passengers and not have a computer talking at them.
Others find that they prefer to look out the window and may miss information unless it is provided aurally. AWE
provides personalized assistance by knowing each pilot’s definition of acceptable weather conditions and if, when,
and how to volunteer information about deteriorating conditions.

Defining Acceptable Conditions Weather influences each pilot’s continue/land-now en-route decision differently.
To accommodate different experience or comfort levels, AWE can be personalized to warn of conditions each pilot
considers adverse. Via the graphical user interface (GUI) shown in Fig. 1, the pilot can set thresholds for any of a
large set of situations. For example, the pilot can specify a desire to be informed of any revised forecasts that predict
crosswind values at the destination airport greater than 15 kts. In addition to weather elements, the pilot can specify
minimum acceptable runway length; whether AWE should select alternate airports near the current location or near
the original destination; performance characteristics (horsepower, maximum ceiling, and usable fuel) of the aircraft;
typical cruising altitude and power settings for short, medium, and long trips; and a definition of short, medium, and
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Fig. 1 Pilot preferences window. The pilot can modify stereotypical values to better reflect individual preferences.

long trips. Because of the multitude of options and to obviate the need for each user to personalize it prior to use,
AWE begins with limits reasonable for a typical pilot, as suggested by Elaine Rich’s*” stereotypical user model. The
pilot can then adjust the limits as desired. The GUI shown in Fig. 1 is a preliminary attempt to encapsulate how a pilot
would personalize the various options available in AWE. In our user study reported later, users (pilots) were asked to
set their personal preferences using this interface and these preferences were considered complete by nearly all the
pilots. However, the user study focused on the evaluation of AWE for workload reduction and not on the interface
design. There is clearly a need to redesign this interface or further constrain available options as a consequence of
future usability studies on interface design.

Defining Notification Conditions For an individual pilot, the type of assistance desired may vary with the length
of a flight. For example, if a pilot always departs with at least enough fuel to easily complete a medium length trip,
winds aloft changes may be a consideration only on a long flight. On the other hand, the most recent altimeter setting
may always be important, even on local flights. To accommodate individual preferences for automatic notification,
AWE maintains when the pilot wants to be informed about each condition defined by the eight combinations of
the cross product of (short, medium, long) crossed with (volunteer, query). Volunteer and query refer to whether
AWE volunteers that it has detected conditions outside the stated limits, or whether it waits for the pilot to query for
the information. Similar to the limits, preferences for notification are initialized for a stereotypical pilot and can be
adjusted to suit an individual pilot.

Defining Notification Methods In addition to when to inform the pilot, AWE maintains a list of ~ow to inform
about each condition: verbally, visually, or with an audio alarm. AWE is initialized to use all three options for each
condition, but a pilot can adjust this to suit personal preferences. Both visual and verbal warnings are terse: they
provide only enough information to make the pilot aware of the conditions; additional details can be extracted via
the user interface. Because the pilot may be busy with other tasks when warnings are issued, a historical record of
visual warnings is available in a separate AWE messages scrolling window, shown in Fig. 2.
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Messages from AWE

Updated metar for San-Jose received: ceiling is below preset limits.
Detected worse conditions than forecast at San-Jose lower ceiling
Flicht time to Petalumais 2.4 hours & reauires 17 callons

Fig. 2 AWE messages window. The pilot can scroll through a history of messages provided by AWE.

After extended interaction with a particular pilot, AWE may determine that the above notification items are
inadequate. It may detect that additional information is often requested or automatically-volunteered information is
requested at additional points along the flight, not just when new weather reports are received. In this case, AWE
automatically expands the set of information it provides by applying machine learning techniques to learn the pilot’s
habits, as described in the next section. The pilot’s habits are stored in a data file that can be linked manually (current
procedure) or linked automatically as a result of a login procedure. Because AWE is designed for use by GA pilots who
typically fly as a one-person crew, it is adequate to load in the data file for one pilot at start-up. Further considerations
will be necessary to extend AWE to other areas of aviation where a two-person crew is standard.

IV. Automatic Adaptation

Many pilots develop habits for when they want certain information. For example, a pilot may have a habit of
looking up information about the airport when within 30 miles, getting the destination surface wind and verifying
the runway orientation when within 20 miles, and then verifying the pattern altitude when within 10 miles. When
two pilots fly together often, even though the second pilot is not a required crew member, he is often used as an
additional resource, especially when the pilot’s workload increases during the approach phase. After enough flights
together, the second pilot may learn to anticipate when the pilot will ask for his assistance.

AWE implements similar anticipation by tracking what type of information the pilot asks for (e.g. pattern altitude,
nearest IFR conditions, etc.), and when (distance from the destination and weather conditions at the destination) it
is asked for. AWE fulfills the request and adds a vector representing the directive to its set of directives used to learn
the pilot’s habits. After five requests for a particular type of information, AWE generalizes the habit using a modified
reflex learning technique described below. When similar conditions are encountered, AWE volunteers the information
without prompting. As an example, if nearest IFR conditions are requested when within 50 miles from the airport
and the temperature-dew point spread is 3 degrees Celsius, AWE may learn that it should volunteer that information
without prompting. However, if the training set for /FR conditions consists of (density altitude, temperature-dew
point spreads) of {..., (2500, 3), (500/, 3), (1000', 2), ...}, ignoring all the other elements, it may also learn that
if the density altitude is less than 2500’ it should volunteer nearest IFR conditions. Like a human assistant, AWE
improves its understanding of the pilot’s habits with additional training. Also like a pilot assistant, it uses domain
knowledge to eliminate irrelevant generalizations.

Learning Algorithm Details There are various methods for teaching machines how to extract commonalities
between situations in order to make decisions using resulting generalizations. Typically, a set of example situations
is encoded by a set of properties and the learning algorithm must formulate general descriptions for related subsets
of situations. When a new situation is presented to the system, it uses these descriptions to determine what type of
situation most closely resembles it. Using this classification, it could then decide what to do next.

Each of AWE’s example situations is encoded by the ten-tuple (type of information requested, distance to desti-
nation, trip length, visibility, ceiling, wind, crosswind, temperature, temperature-dew point spread, density altitude)
where the last seven elements represent the weather conditions at the destination airport. By using the type of infor-
mation requested property as the classification for the example, we could apply a decision tree®! or a neural network>?
algorithm to extract the type of conditions that prompt the pilot to seek that type of information. Or we could apply
a Bayesian classification system?? directly on the 10-element vectors and have it separate the examples into related
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subsets that describe the pilot’s habits. However, all three techniques require a large set of training examples to
enable relevant learning. Without adequate training data, the system could easily extract the unlikely rule mentioned
previously: density altitude of less than 2500’ prompts the pilot to request IFR conditions.

To make AWE’s learning algorithm effective with less training data, we chose to integrate domain specific knowl-
edge with a reflex, or stimuli-response, learning approach.?! Although the pilot may ask for various items during
the approach and may ask for them to be provided using the three different formats, the AWE prototype only tracks
the pilot’s habits with eight major approach-relevant directives and only when the request is about the destination
airport. Each time one of these directives is issued, the 10-property description is added to the training set, and AWE
is retrained to include the new example in determining how far out and under what weather conditions AWE should
volunteer a response without prompting. To reduce the likelihood of misinterpreting a non-habitual directive as a
habit, generalization occurs for a type of information only if there are at least five examples.

The learning algorithm, Enhanced Algorithm for Reflex Learning (EARL), begins by separating training examples
by type of information requested. Each subset is learned separately. Reflex learning relies on memorizing each training
example to determine future action under the same conditions. EARL enhances this approach by generalizing from
the given examples to determine future action under similar but unseen conditions. It accomplishes this by fusing
the values for each property using a union, minimum, maximum, or averaging operation depending on the property.
Trip length is fused by taking the union of the values evident in the examples. Thus, if the examples represent
directives issued on three short and four medium length trips, the fused value will be (small or medium), but not long.
Distance from destination is fused by taking an average of the example values. Visibility, ceiling, and temperature-dew
point spread are fused by taking the maximum value for each property, and the remaining properties (wind speed,
crosswind, temperature, and density altitude) are fused by taking their respective minimum value. Hence, EARL
may learn to provide a particular type of information when the visibility is less than 20, wind is greater than 15, or
the temperature is greater than 80 degrees Fahrenheit.
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Fig. 3 AWE learned habit modification window. The pilot can view, modify, or repress habits learned by AWE to
better reflect personal information needs.
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EARL further enhances the reflex learning approach by applying domain knowledge: EARL is provided with
a list of relevant properties for each type of information requested. For example, for say density altitude requests,
only the temperature and density altitude properties likely contribute to a pilot’s decision to make the request. This
prevents it from learning from irrelevant coincidences of data combinations.

Finally, learning based on a small set of examples could lead to the undesired extraction of unforeseen habits.
AWE provides a graphical method, shown in Fig. 3, to enable the pilot to view, modify, and repress learned rules
to better reflect desired interaction. Similar to the GUI for setting pilot preferences, the habit modification GUI is a
preliminary attempt to encode the pilot’s interaction with EARL. Further work on user interface design followed by
a usability study of the design is necessary to strengthen this aspect of AWE.

V. Workload Reduction Evaluation

The design of AWE was influenced by the first author’s experiences as a general aviation pilot. In addition, feedback
was taken on many issues at several stages from different pilots to ensure that the system remains pilot-friendly and
usable. Finally, the system was more formally evaluated by pilots. The evaluations focused on determining whether
pilots found AWE to be a useful tool and whether it decreased their workload. In an earlier study by,® the graphical
representation aspect of AWE was compared with several other weather data visualization systems?*343> where the
pilots’ opinions were elicited via a questionnaire and short interview mainly about the detailed specifics of the visual
design of the weather elements. While this preliminary study suggested that the visual representations in AWE are
useful for weather briefing, it fell short of establishing whether AWE can reduce the workload by reducing the time
for weather understanding and interpretation. In this work, we first evaluate the weather presentation aspect of AWE
to obtain a quantitative workload reduction assessment using a part-task pre-flight simulation described below, as
well as to determine the overall usability of the system using a post-simulation questionnaire. We then focus on the
evaluation of the context-aware agent aspect of AWE by evaluating the performance of pilots on real world in-flight
tasks such as scanning for traffic, looking for anomalies in instrument readings, and formulating alternate plans for
forced diversions using a part-task flight simulation.

Due to resource constraints, the evaluations we present are not very extensive. They serve as an initial attempt
to determine the impact and desirability of a context-aware agent for weather updates. We are aware that the small
number of pilots in our studies may limit the generalization of our results. Additional studies with more pilots, a more
diverse group of pilots, and more realistic simulation facilities are required prior to firmly establishing the utility of
AWE.

The primary question of the evaluations was Does AWE reduce the pilot’s weather-related decision making
workload? Specifically, we wanted to answer Is the time to make a decision decreased by AWE? Related follow-up
questions were If it does, how? If not, how can it be improved? The weather agent can be used both during pre-flight
briefings and for in-flight assistance. We begin by presenting the evaluation of AWE for pre-flight weather-related
tasks.

Pilots Six general aviation pilots participated in the workload reduction studies. The approximate total flight time
of the pilots ranged from 160 hours to 3200 hours with a mean of 1326 hours and a median of 650 hours.

Pre-flight To measure preflight workload reduction, we asked each pilot to interpret the weather for a pre-defined
route. The pilots were given pertinent information about the aircraft. Additionally, to eliminate variations due to
different pilots’ definition of acceptable weather, they were instructed to assume a set of pilot limits for visibility,
ceiling, and surface wind speed. Prior to beginning the study, we provided the go/no-go decision questions we would
ask at the conclusion of the study. Finally, we answered any logistic questions they had.

Each pilot was provided with two routes, counterbalanced in the type of weather conditions, number of en-route
report elements, and distances. Two sets of airports were selected to decrease possible effects of transferring learned
knowledge about the airports and regions between tasks. Each pilot was assigned two tasks. For both tasks, we
measured the amount of time required to answer the go/no-go questions. For the first task, the pilots were provided
a standard computer weather briefing for a 233 nm flight. For the second task, the same pilots were provided with
an AWE briefing for a different 223 nm flight. The AWE briefing consisted of the pilot selecting desired values for
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departure time, cruising altitude and airspeed and then viewing current and forecast conditions along a pilot-specified
route or the area of interest. An example view of an AWE display of current conditions and winds aloft for a four-
airport route is shown in Fig. 4. It shows two of the three possible representations—textual and symbolic. An example
view utilizing the triangular icon representation to display forecast conditions for a particular region is shown in
Fig. 5. More details on how to interpret the figures are available in Ref. 6.

Answering the questions using the conventional briefing required an average of 60.2 minutes, whereas answering
them using AWE required an average of 23.5 minutes. Hence, answering preflight relevant questions is more than
2.5 times faster with AWE. Additionally, the AWE times include the time to get comfortable with the system.

In-flight For the in-flight interaction evaluation, due to constraints with aircraft, data transmission, and pilot
resources, we measured workload reduction in a ground-based part-task simulation. The same six participants were
randomly divided into two groups. Half of the participants had access to the conventional method of in-flight weather
updates—known as Flight Watch—and the other half had access to AWE updates. The participants were all presented
with a pre-assigned route of flight and a pre-flight briefing. The weather conditions were forecast to be ideal for
the first half of the flight and marginal but acceptable for the second half. The assigned route required four hours
of flight time but we started the simulation already established in cruise 1.5 hours into the flight. The pretense of
flying the first half allowed us to simulate restricted access to weather updates—rather than beginning the simulation
with the most recent weather reports, they began with two-hour old reports. This increased the likelihood of getting
an in-flight weather update. To ensure an update request, we forced a diversion: we advised them that clouds were

Fig. 4 Route-specific current conditions and winds aloft shown alongside a pilot-selected route. Wind velocity at the
pilot selected altitude is depicted graphically with a black arrow. The airport conditions are shown using the symbolic
representation (the vertical rectangle) and the textual representation. The symbolic representation shows, top to
bottom, surface wind velocity, cloud coverage at altitudes from 12,000 feet down to the surface, and surface visibility.
The textual representation shows all the elements available in computer briefing reports except for remarks.
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Fig. 5 Area-wide forecast conditions display using triangular icons. The top, lower left, lower right, and the middle
subtriangles represent winds, visibility, clouds and temperature/ dew point spread conditions respectively. Red,
yellow, white, and gray colors indicate alert, caution, normal conditions, and unavailable respectively.

making the original route impassable. After they planned for the diversion, to evaluate the effectiveness of AWE
during the approach phase consistently for all pilots, without the additional problem of trying to compare an approach
to the original destination against an approach to a local alternate destination, we eliminated the cloud restriction
and cleared them along the original route to the original destination. We discuss the measurements taken in a later
subsection.

To further decrease the demand on the participants’ time, we accelerated simulated time by a factor of six, thereby
decreasing the simulated flight time from 2.5 hours to 25 minutes. The timing of issuance of weather reports was
accelerated to maintain consistency.

To simulate the workload of a flight, we designed a simulated cockpit, shown in Fig. 6. In the real world, pilots
must fly the aircraft, maintaining desired altitude, airspeed, and heading; scan the engine instruments, looking for
anomalies; scan for traffic, maneuvering to maintain separation; and maintain weather awareness. The virtual cockpit
simulates these to varying degrees. The participants were provided with complete instructions on how to fly the route
and deal with traffic and engine anomalies.

Measurements With both sets of pilots busy "flying" the aircraft and scanning for traffic and engine anomalies,
we compared their level of weather awareness as well as the workload required to maintain it. To eliminate having
them work toward a task, the participants were not aware of the parameters we were measuring. Specifically, we
measured the amount of time spent getting updated weather conditions, how quickly they formulated an alternate
plan for the forced diversion, and how often they updated the altimeter setting along with the time required to do so.
We also measured their performance in detecting the anomalies presented by the virtual aircraft, how quickly they
noticed traffic, and how quickly they returned to the desired altitude, heading, and airspeed. These quantities provided
a measure of whether they ignored the flying task in preference to gathering weather data. In addition, the pilots
getting AWE updates were asked about their satisfaction with AWE and suggestions for increasing its usefulness.
The pilots using Flight Watch were given a demonstration of AWE and asked the same questions.

Additional Logistics Because we were doing a ground-based simulation, using simulated weather data, and an
accelerated clock, Flight Watch was simulated. The role of Flight Watch was filled by another pilot who could
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Fig. 6 AWE evaluation simulator window. Used to simulate workload of a VFR flight. The pilot must look for traffic;
maintain desired airspeed, heading, and altitude; monitor engine parameters; manage fuel; and tune to appropriate
weather frequencies for weather and altimeter setting updates.

be contacted via telephone (to simulate some of the non face-to-face communication issues). We did not simulate
possible delays due to Flight Watch filling other pilots’ requests. Hence, the measurements for the pseudo Flight
Watch group represent a lower bound. The pilots were not restricted in the type of questions they could ask nor in the
level of processing and analysis they wanted Flight Watch to provide. The only requirement was that they continue
to fly the simulated aircraft while speaking to pseudo Flight Watch.

Communication with AWE was also assisted. The recognition accuracy of the speech recognition system we
used (IBM ViaVoice) increases with speaker training—that is, speaker-dependent recognition accuracy is higher
than speaker-independent accuracy. The grammar, though designed to mimic other pilot communication, requires
some learning effort by the pilot. Testing for learnability requires repetitive usage. Instead, we chose to use available
time with pilots to measure other aspects. To eliminate extra pilot effort required to train ViaVoice and to learn
the grammar, we assisted the pilot by being a conduit for verbal requests to AWE. The simulation assistant (who
previously trained ViaVoice) issued the spoken directives to AWE.

The pilots had two monitors directly in front of them. One monitor displayed the simulated cockpit while the
other provided access to AWE. The pilots could use manual access techniques (using either the GUI or speech user
interface) to obtain current and forecast conditions and also rely on the weather agent to notify them (verbally,
visually, or with an audio alarm) of updated conditions that may affect their flights. Although the route of flight
was pre-selected, the pilots were not restricted in which airports they could seek information about or the type of
information desired.

Each evaluation session lasted approximately 60 minutes and included time for familiarization with the virtual
cockpit, for a preflight weather briefing, for a brief familiarization with AWE, for flying the flight, and for debrief.
The AWE familiarization took the form of a demonstration for the Flight Watch group and was presented at the end
of the session.
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Fig. 7 Results of in-flight workload reduction user study. Average time, shown in seconds, for weather access using
either Flight Watch or AWE is shown for the six pilots. Pilots 2, 4, and 6, represented by the numbers below the bar
graph, used Flight Watch, whereas pilots 1, 3, and 5 used AWE. The average time for weather access using Flight

Pilot

Watch was 946 seconds compared to 192 seconds for weather access using AWE.

Results The results of the in-flight evaluation are shown in Figs. 7 and 8. On average, the pseudo Flight Watch group
spent 946 seconds tracking the weather, mostly to select an alternate; detected the three major categories of anomalies
(traffic, flight instruments, and engine instruments) in 36 seconds; and spent a couple of minutes formulating a landing
plan. In general, they updated their altimeter setting after approximately 30 simulated minutes of flight and once

again prior to landing.
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Fig. 8 Results of anomaly detection during in-flight workload study. Recognition times, in seconds, are shown for
the three major anomaly categories: traffic detection, flight instrument readings, and engine instrument readings.
Pilots 1, 3, and 5 used AWE for weather updates, whereas pilots 2, 4, and 6 used Flight Watch. For all three tasks,
anomaly detection times for pilots using Flight Watch are higher compared to times for pilots using AWE.
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On average, the AWE group spent 192 seconds tracking the weather, again mostly to select an alternate; detected
the three major categories of anomalies in 12 seconds; and spent less than one minute formulating a landing plan.
They each maintained a current altimeter setting within the precision defined by the default pilot preferences (0.02).

In the post simulation questionnaire, the AWE group was asked about the interaction experience. Specifically,
they were asked how much they liked or disliked the automatic alerts about deteriorating weather, the completeness
of the set of preferences they can specify and suggestions for others, how much they liked that it could learn their
habits, and suggestions for improvements. The pseudo Flight Watch group was given a demo of AWE after their
simulations and asked their opinion on the same questions. The number of interactions for each participant was not
adequate to enable AWE to learn his habits. Thus, the effect of the learning was experienced using the habits of the
simulation assistant.

On average, the pilots gave AWE a score of 1.5 (where 1 is liked it a lot and 5 is did not like it at all) for how much
they liked automatic alerts, 1 for preference completeness, and 1.8 for learning their habits. For automatic alerts,
the two pilots who gave it a score worse than 1 (score of 2 and 3, respectively) cited that they do not necessarily
want that much information, especially for en-route airports. We pointed out that they could set the pilot preferences
to not volunteer en-route information or to conditions they would want alerts for rather than our very conservative
default values. Habit learning was rated worse than 1 by three pilots. One was concerned about privacy issues—he
did not want his personal habits for airport information retrieval stored and possibly revealed. Another indicated that
he would like such information at unfamiliar airports, but not at the airports he flies from regularly since he already
has that information memorized. The third pilot did not specify a reason. Pilot preferences were considered complete
by nearly all the pilots. The only one who rated it a 2 did not offer suggestions on missing items.

Limitations We now discuss the limitations of the user study, user interface design, and AWE. Major limitations
of the user evaluation study include small number of pilots used in the usability study, simulated flight environment,
and relative simplicity of tasks performed in the user study.

First, our part-task simulator is much simpler than an aircraft or a flight simulator but suited our purpose in
manipulating the scanned elements and automatically recording the pilot’s awareness of changes. By using a realistic
flight simulator, we would have been challenged to determine the pilot’s awareness of changes. To track awareness
automatically, we would have had to add an additional interface for the pilot to explicitly notify us as he noticed a
change. This process itself could also interfere with flying the simulator. Additionally, we did not have the resources
to modify an existing flight simulator to introduce random errors.

Second, the number of pilots and diversity of pilots is also an issue. Although many pilots are interested in
introducing additional technology into the cockpit, recruiting an adequate number without additional reward to
allocate a few hours of their time is a challenge. Further, the pilots who do sign up for such a study tend to favor
technology. This could influence the results and lead to lower generalization of results to a typical pilot.

Finally, the task itself differs from that in a real flight. There are usually many hints that the weather is deteriorating
ahead. Unfortunately, many times pilots ignore those hints and continue with their planned flight. These hints were
not available in our simulation. The out-the-window view did not change to reflect nearby weather conditions. For
this reason, we did not track how quickly the pilots noticed the change at a distant location, but only recorded how
long they interacted with either AWE or a person to determine the weather conditions. Most of the pilots explicitly
checked the weather only to plan the forced diversion, so the results are not as limited by this factor as it may appear
on first glance.

In addition to the limitations noted above, major limitations of AWE include the design of the user interface for
pilot preferences window (Fig. 1) and habit modification window (Fig. 3), and evaluation of the learning algorithm. As
noted before, the user interfaces incorporated in the current work are preliminary and not a major focus of this work.
Also, extended usage of AWE will be needed to evaluate the habit learning algorithm. Since the AWE evaluations
consisted of a single flight per pilot, it did not allow AWE to learn each particular pilot’s habits sufficiently; thus, the
learning algorithm has not been tested fully. Further improvement and evaluations are necessary to determine the
usefulness of these aspects of AWE.

The pilots also suggested several improvements in habit tracking, displays, overlays, and additional functionality.
In particular, they suggested automatically extrapolating the values of preferences based on conditions observed
during a series of flights; notifying the pilot which preferences are habitually violated; overlaying other types of
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restrictions (e.g., active military training routes, active military operation areas, temporary flight restriction areas)
to help with route or diversion planning; and automatically highlighting suggested alternate airports and providing
initial heading from current position.

Finally, AWE is designed more for flying in unfamiliar locations or with changing weather. These are precisely
the situations in which most accidents are reported (so-called “VFR into IMC"accidents in which a pilot flying under
visual rules flies into weather that requires flight by instrument rules). With this in mind, during the user evaluation
study, the route of flight was unfamiliar to the pilots and the weather history was only available for a couple of hours
prior to the start of the flight. The usefulness of AWE is likely to be limited when the pilots constrain their operations
to local area or fly in near optimal weather conditions.

VI. Conclusions

We have incorporated a context-aware intelligent assistant in AWE, an aviation weather environment system
for improving small aircraft pilots’ situational awareness. Our usability study with six pilots in a simulated flight
environment showed that AWE reduces the pilot’s preflight workload for weather access (2.5 times faster) and
workload for diversion planning tasks (5.5 times faster) based on anomaly detection by scanning traffic conditions,
and flight, and engine instrument readings. This preliminary evaluation suggests that workload reduction is possible
with use of the weather agent in both preflight and in-flight tasks.

Major areas of improvement in AWE include user evaluation study with a larger number of diverse pilots in a
more realistic flight environment, and GUI design for pilot preferences and habit modification. Additional areas of
improvements that can be incorporated in future enhancements of AWE include habit tracking and learning, displays,
overlays, and additional functionality.

Moreover, pilot’s situational awareness can be further improved by integrating AWE with terrain information,
traffic information, navigation information, and aircraft health information. Individual agents responsible for each
system separately could collaborate to determine the best course of action. Finally, the presentation of information
and advice can utilize additional methods, such as a head-mounted display, tactile feedback, or data sonification.
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